INCREMENTALLY LEARN THE RELEVANCE OF WORDS IN A DICTIONARY FOR
SPOKEN LANGUAGE ACQUISITION

Vincent Renkens', Vikrant Tomar?, Hugo Van hamme

1

'Department Electrical Engineering-ESAT, Katholieke Universiteit Leuven
Kasteelpark Arenberg 10, Bus 2441, B-3001 Leuven Belgium
2Fluent.ai, 780 Avenue Brewster, QC H4C 2K 1 Montréal Canada

{vincent.renkens, hugo.vanhamme}@esat.kuleuven.be, vikrant@fluent.ai

ABSTRACT

This paper discusses a spoken language acquisition system
for a command-and-control interface. The proposed system
learns a set of words through coupled commands and demon-
strations. The user can teach the system a new command by
demonstrating the uttered command through an alternative in-
terface. With these coupled commands and demonstrations,
the system can learn the acoustic representations of the used
words coupled with the meaning or semantics. In previous
work the focus was mainly on a batch learning scheme to train
the model. All the commands and demonstrations had to be
stored and the model had to be retrained from scratch every
time a new demonstration was given by the user. This work
presents a Bayesian learning scheme where the dictionary of
learned words can be updated when new data is presented.
The dictionary can automatically expand to add new words
or shrink to forget old words. The proposed system is tested
on a language acquisition task where the user suddenly starts
using new words. The results show that the proposed system
can learn the new words quicker than a baseline where the
size of the dictionary cannot be adjusted.

Index Terms— Vocabulary learning, Spoken language
acquisition, Non-negative Matrix Factorisation, Machine
learning, Bayesian methods

1. INTRODUCTION

Designing a natural user interface for command and control
applications is a challenging task. The designer has to make
hard choices, for example, how to name objects and actions.
It is impossible for the designer to make choices that satisfy
all potential users, so the user has to yield to the designer’s
choice. It would be more desirable if the technology could
adapt to the user instead of the other way around.

We propose an interface that learns its vocabulary from
the user. The user can teach the system by uttering a com-
mand and subsequently demonstrating the command through

Research funded by a PhD grant of the Research Foundation Flanders
(FWO)

an alternative interface. From the demonstration, the impor-
tant concepts, called semantics, are extracted and the system
is trained to link spoken words to these concepts. The system
is trained completely speaker and application dependent. This
means that the number of words the system has to learn is very
limited. For the applications where this system can be used
the vocabulary size is limited to a couple dozen words. How-
ever, the amount of training data is also very limited, because
demonstrating a command requires effort from the user which
should be minimised. To summarise, the system will be able
to learn a limited set of words with as little training data as
possible. Potential applications for such an interface include
domotics [1], smartphones/watches, automotive or robotics
(2].

In the past we have proposed a spoken language acquisi-
tion system [3, 4, 5] that learns a dictionary of spoken words
with Non-negative Matrix Factorisation (NMF) [6]. NMF can
find recurring acoustic patterns (like words) and link them to
the semantics by separating the contributions of the words in
the speech signal. The semantics of an unknown command
can then be found by detecting which of the learned words
occur in the utterance. Other applications of NMF include
music analysis [7], bioinformatics [8] and image classifica-
tion [9].

Our previously proposed language acquisition system
faces two problems that are tackled in this paper. First, the
number of words in the dictionary has to be defined before-
hand. In previous work the dictionary size was determined
by considering how many unique concepts were extracted
from all user demonstration plus some extra words that are
not linked with a meaning (e.g. “please”), called garbage
words. This approach has two problems, (1) this does not
consider a scenario where the user uses several words for the
same concept and (2) The number of garbage words has to be
guessed, which can be difficult.

The second problem with the language acquisition system
is that it is a batch learning algorithm. The system should be
able to learn on the fly and the user should be able to use it
while it is still learning. To allow this kind of behaviour all

past commands have to be remembered and the model has to
be trained again with every update. This is inefficient both
from a memory and a computational view.

Both of these problems have been tackled in the past
separately. In [10] a technique for automatically learning
the relevance of words was proposed. The dictionary can be
initialised with a large number of words and at the end of
training only the relevant words are kept. This technique is
called Automatic Relevance Determination (ARD). In [11]
The NMF batch algorithm was adapted to an incremental
algorithm. The main contribution of this paper is combining
the techniques to solve both presented issues. The system
will be able to incrementally learn a set of words and their
relevance. To make this possible both techniques have to be
adjusted.

The remainder of this paper is organised as follows. In
section 2 the spoken language acquisition system that we have
proposed in the past is explained. In section 3 the main con-
tribution of this paper, the technique that can incrementally
learn the relevance of words is presented. In section 4 the ex-
perimental results will be presented and discussed. Finally,
some conclusions will be formulated in section 5.

2. LEARNING A SET OF WORDS WITH NMF

Spoken language acquisition based on limited amount of
commands and demonstrations is a non-standard problem, so
non-standard techniques are used to tackle it. For the ease
of the reader the spoken language acquisition system that we
have been using in our previous work [3, 4, 5] is explained in
this section.

2.1. Problem statement

The goal of the system is to learn a set of words based on vo-
cal commands, called a dictionary, and link them to a mean-
ing based on the corresponding demonstrations. No transcrip-
tions are available. What can be extracted from the demon-
stration is a set of “concepts” that are relevant for the demon-
stration. This set of concepts is called the semantics of the
command. For example, if the user gives a demonstration of
calling a person, the concepts of calling and that person can
be extracted. It can then be assumed that there will be a word
(or a set of words) in the vocal command that can be linked
to these concepts. The vocal command for the example could
be “Call John Doe”. “call” can be linked to the concept of
calling and “John Doe” can be linked to the concept of the
person that is being called.

From the commands and corresponding demonstrations
we can extract a collection of N pairs {(v5,0,),n € [1 :
NJ}. v, is a vector representing the semantics of the n'™ com-
mand. Every element in this vector corresponds to a concept,
if the concept was extracted from the demonstration it is set
to 1 or active and O or inactive otherwise. O,, is called the ob-

servation matrix and is a D x T, matrix of acoustic features
representing the n™ spoken command. D is the dimension of
the feature vector and 7, is the number of acoustic frames.

From the semantic-observation pairs a set of acoustic
word-like patterns will be learned that can be linked to the se-
mantics. The semantics of an unknown command can then be
discovered by determining which of these word-like patterns
occur in the vocal command. In the remainder of this paper
we will simply refer to “word-like patterns” as “words”.

2.2. A spoken command as a combination of words

To learn the set of words, a vocal command will be considered
to be a weighted sum of words. For this purpose the obser-
vation matrix of an utterance O will be converted to a vector
representation v®. This vector represents the entire utterance,
how it is computed will be discussed at the end of this section.
This acoustic representation is then approximated as:

K

v R Y hwl, (1)
k=1

w? is the acoustic representation of the k™ word in the dic-

tionary and there’s a total of K words. hy is the weight of

the k" word in the sum. These weight will be called the acti-

vations. For example, in the command “Call John Doe”, the

words “call” and “John Doe” will be activated. The acous-

tic representations will be constrained to be non-negative to

avoid words cancelling each other out.

The same approximation can be made in the semantics:

K
v A~ Z hyws,)
k=1

w$, is the semantic representation of the k™ word in the dic-
tionary. Notice that the activations for the acoustic represen-
tation and the semantics are shared, making sure that the se-
mantic representation is linked to the acoustic representation.

2.3. Finding word representations with NMF

To find the acoustic and semantic word representations, the
acoustic and semantic representations of all commands are
combined into an acoustic data matrix V* and a semantic data
matrix V*. By stacking these data matrices on top of each
other into the data matrix V' we can write the acoustic and
semantic decompositions from equations (1) and (2) for all
commands into one matrix decomposition:

% w*
Ve
Va~WH 4

W?® and W* contain the acoustic and semantic representa-
tions of the words, they are called the acoustic and semantic

dictionary (stacked into the dictionary W). H contains the
activations of the words in all commands and is called the
activation matrix.

The dictionary and activation matrix are found with NMF
[6]. NMF decomposes a non-negative matrix into 2 non-
negative matrices, so it’s exactly what is needed to find the
word representations. During training NMF is used to find
the acoustic and semantic dictionary. To find the semantics
of an unknown command during testing the acoustic dictio-
nary is used to find word activations in the spoken command.
Subsequently the semantic representation can be computed by
multiplying the semantic dictionary with these activations.

2.4. Acoustic representation of a spoken command

There are 3 main requirements for the acoustic representation.
(1) the vector has to have a fixed length so they can be used as
columns in a matrix, (2) The vector needs to be non-negative
in order for it to be usable in NMF and (3) the contributions of
the words need to be additive so equation (1) holds. A repre-
sentation that meets all of these requirements is to use counts
of acoustic events. In our previous work [3, 4, 5] these acous-
tic events were found by fitting a Gaussian Mixture Model to
the data, each Gaussian was assumed to be one acoustic event.
In this paper phones are used as acoustic events. A Deep
Neural Network (DNN) [12] is trained on a large database
of speech and then used to extract phone posteriors for the
spoken command.

The downside of just counting phones in the input speech
is that all timing information of when the phones occur in
the utterance is lost. This is somewhat alleviated by counting
phone co-occurrences instead. The acoustic representation is
a count of the co-occurrence of two phones with a fixed delay
between them. Several delays are used and stacked to capture
multiple time spans. This acoustic representation is called a
Histogram of Acoustic Co-occurrences (HAC) [13].

3. INCREMENTAL AUTOMATIC RELEVANCE
DETERMINATION

In this section the main contribution of this paper will be pre-
sented. The two problems with the current language acqui-
sition system that were presented in the introduction will be
tackled. Automatically determining the size of the dictionary
will be done with ARD, presented in [10]. Updating the dic-
tionary when a new batch of data is presented will be done
with Incremental NMF presented in [11]. First the proposed
technique is explained and at the end the differences with the
techniques from [10] and [11] will be highlighted.

3.1. Model

In the NMF learning algorithm proposed by Lee and Seung
[6], the matrix factors are learned by maximising the log like-

lihood. Two main changes will be made to the objective to
make both ARD and incremental learning possible. (1) for
every word a relevance parameter () representing how often
the word is activated will be added and (2) instead of the log
likelihood the log posterior will be maximised:

(W,H,v) = arg max log P(W,H v|V) (5)
(W,H,v)

Remember that V' is the data matrix that contains both the se-
mantic representations of the commands and the HACs. With
Bayes’ rule we can write the posterior probability in terms of
likelihood and priors:

P(V|W, H)P(W)P(H|v)P(v)
P(V)

P(W, H,v|V) = (6)

Every factor in the posterior plays a well defined role in
the learning algorithm (except for P(V') which is constant).
The likelihood P(V|W, H) determines how well the matrix
factors fit the data. A Poisson distribution is used as the like-
lihood function because it’s appropriate for count data, which
is used to construct the data matrix:

F N
log P(VIW,H) < ZZ [Vinlog(WH) g — (WH) pn]

)
< is equality up to a constant and F is the number of rows in
the data matrix.

The activation prior P(H |v) pushes the algorithm to only
activate words that are relevant, so the prior will push the ac-
tivations to O for irrelevant words. An exponential prior with
the relevance parameters as the scale parameters is used to
obtain this effect:

log P(H|v) £ —

S5 e

k=1n=1

The dictionary prior P(W') pushes the algorithm not to
deviate too far from the dictionary of the previous model up-
date. This means that the dictionary is remembered through
the dictionary prior. A gamma distribution could be used for
the dictionary prior because it is conjugate to the Poisson dis-
tribution. However, NMF is scale invariant. This means that
when a row in H is scaled and a column in W is inversely
scaled the same result is obtained. This means that when the
activations of a word are pushed to 0, this could be compen-
sated by scaling up the word representation, which is not the
desired behaviour. To avoid the scaling ambiguity the word
representations are normalised so they sum to 1. When the
variables of the gamma distribution are normalised, a Dirich-
let distribution is obtained:

K F
log P(W) = Z Z agr log Wy,)
k=1 f=1
« are the shape parameters of the Dirichlet distribution and
the sufficient statictics of the dictionary. After every model
update the sufficient statistics of the dictionary are computed
and remembered for the next model update.

The relevance prior P(v) is used to remember the rele-
vance parameters from the previous model update just as the
dictionary prior is used to remember the dictionary. As pro-
posed in [10] an inverse gamma distribution is used:

K
, b
log P(v) = Z [ak log g, + k] (10)
Vg

k=1
a and b are the shape and scale parameters of the inverse
gamma distribution and the sufficient statistics of the rele-
vance parameters. Just like for the dictionary, the sufficient
statistics of the relevance parameters are computed after ev-

ery model update and remembered for the next one.

3.2. Inference algorithm

The inference algorithm is based on Expectation Maximisa-
tion. Every model update consists of 2 steps. In the M-step,
the objective function is iteratively maximised. Just as Lee an
Seung, we use multiplicative update rules because they retain
the non-negativity [6]. By deriving the objective function we
can find the update rules:

N
V n
Wik Wee Y Wﬂk +agm (11)
n=1 n

F V n
Zf:l (Wé)fn Wfk'
F 1
21 Wk + oo

- Zﬁ;l Hip + by
N + ag

Hk:n <~ Hk:n

12)

Vg (13)
after every update of the dictionary, it is renormalised.

In the E-step, the sufficient statistics of the dictionary and
relevance parameters are computed. In the proposed model
they can be computed as:

N
v,
t+1 fn t
0‘5%) :Wszi(WH)ankn-i-a}lz (14)
n=1
a!™ = N+ a! (15)
N
b =37 Hy 4+ b (16)
n=1

-(t) is the parameter used in model update ¢. Notice that the
formula for the dictionary and its shape parameters are the

same. The difference is that the shape parameters are not nor-
malised while the dictionary is.

3.3. Forgetting

In equations (14)-(16) one can see that the sufficient statistics
can only grow, because at every timestep only non-negative
values are added to them. This causes the variance of the
prior to decrease after every timestep, so the priors become
more restrictive. This causes past examples to have the same
impact as current examples, making it impossible to forget
old information [11]. This problem is solved by introducing
a forgetting factor for both the dictionary and the relevance.
The forgetting factors range from zero to one. The priors are
weakened by raising them to the power of the forgetting fac-
tor, thus weakening the past information after every model
update, making it possible to forget old information. Rais-
ing the prior to a power is equivalent to scaling the sufficient
statistics. Choosing the forgetting factors equal to zero corre-
sponds to taking no past information into account (no mem-
ory). Choosing them equal to one corresponds to weighing all
past information equally (no forgetting).

3.4. Dictionary resizing

While the user is using the system it is possible that they start
using a new word or alternatively stop using a word. In the
first case a word should be added to the dictionary and in the
second case the word should be removed from the dictionary.
However, it is unknown if a new example contains a new word
or not. To allow the dictionary to grow we make the very
naive assumption that every word in a new example is new.
This means that a word will be added for every concept in the
new command. If the word is not activated after the model
update it is immediately removed. Words that are already in
the dictionary could be removed if their relevance drops to
0. However, this would require the system to forget entirely
that the word was once activated in the past, this can take a
while. Instead a word is removed if it has not been activated
in a number of subsequent model updates.

3.5. Comparison with prior work

The model proposed in this paper is similar to the models
proposed in the papers [10] and [11]. In [10] both matrix
priors are exponentially distributed and the scale parameters
are shared between the activations and the dictionary. Shar-
ing the scale parameters is a different way of dealing with the
scaling ambiguity. In this paper this solution is not possible
because the dictionary prior is needed to remember the dictio-
nary of the previous model update, so instead the dictionary
is normalised. Secondly, there is only one shape and scale
parameter for all relevance parameters in [10] and they are
chosen prior to deployment. In this paper the relevance shape

and scale parameters are used to remember the relevance pa-
rameters from the previous update.

In [11] the likelihood function is a multinomial distribu-
tion. However, this requires the approximation to sum to a
constant value, forcing the normalisation of the activations.
Normalising the activations would interfere with the ARD, so
instead a Poisson likelihood is chosen. Secondly, a uniform
prior is used for the activations because it is argued that the
activations in previous batches contain no information about
the activations in the current one. In this paper the algorithm
is encouraged to activate words that were activated in previous
batches, so the activations in the previous batches do contain
information about the activations in the current one.

4. EXPERIMENTS

In this section the experimental results will be presented. The
proposed system is compared to the system proposed in [11],
meaning that no ARD is used.

4.1. Database

The database used in this paper is called Syncom. Syncom
contains spoken commands from users for various electronic
devices like a smartphone or a GPS. Each user recorded 3
sets of 16 commands. All sets contain the same semantic rep-
resentations but the commands are given in a different way,
e.g. “Skip this song” is a different command than “Play the
next track” but the semantic representation is the same. In to-
tal there are 18 concepts in the 16 commands. 5 users have
been recorded and every command was repeated 5 times, so a
set contains 80 commands for every user. Not all commands
that have the same semantics are completely different from
each other. Some corresponding commands contain some
keywords that are the same e.g. “Put on some jazz” and “Play
some jazz”.

4.2. Testing scenario

The goal of this paper is to make the system able to add
new words to the dictionary or remove them if they are no
longer used and everything has to be learned incrementally.
To test the system’s ability to do so we will simulate a user
that changes their vocabulary while using the system. There
are 2 phases in the testing scenario, a pre-change phase and
a post-change phase. One or more sets (each containing 5
repetitions of 16 commands) are assigned to each phase. In
the pre-change phase the system will be trained and tested on
commands from the sets assigned to it, then the user will sud-
denly change their behaviour and in the post-change phase
the system will be trained and tested on commands from dif-
ferent sets. After the change the system should be able to
adjust its dictionary to the new set of commands. In each
phase randomly selected batches of 16 commands from the

sets assigned to it will be presented to the system. When a
batch is presented to the system the dictionary will be up-
dated and then tested on all unseen data in the assigned sets.
For example, if 2 sets are assigned to the pre-change phase
it means that a total of 160 commands which is a total of 10
batches are used for training and testing in this phase. First
one batch will be presented to the system and the system will
be tested on the remaining 9 batches. Then, another batch will
be presented and the system is again tested on the remaining
8 batches and so on until 9 batches have been presented to the
system. After testing the system on the last batch, this batch
is presented to the system and the post-change phase starts.

All possible combinations of sets assigned to the phases
will be tested. Every combination will be put into a group
of similar combinations, every one of these groups is called a
scenario:

o [setis assigned to the pre-change phase and a different
one to the post change phase (1-1)

e 2 sets are assigned to the pre-change phase and the re-
maining one to the post change phase (2-1)

e | set is assigned to the pre-change phase and the re-
maining two to the post change phase (1-2)

e 3 sets are assigned to the pre-change phase. There are
no more remaining sets, so there is no post change
phase in this scenario (3-0)

For every scenario all possible set combinations are tested
for all users and each one of these experiments is repeated
10 times. The experiments for different users are completely
independent because the system is trained in a fully speaker
dependent way. The average results for all these experiments
will be reported. Because the data is presented to the system
in a random order, it will be different for each repetition of
the experiment.

4.3. Results

The average percentage of correct commands in function of
the number of batches presented to the system for all sce-
nario’s can be found in table 1. A command is considered to
be correct if all concepts (which is 1 or 2 for each command)
are correctly recognised.

The accuracy goes up until the users change their be-
haviour. After the change the accuracy drops, which can be
expected. Then the system starts adapting to the new vocab-
ulary and the accuracy goes up again. The system with ARD
performs better than the system without ARD at all times but
specifically after the change, the system with ARD recuper-
ates much faster. This is due to the fact that the system with
ARD can add words to the dictionary that will model the new
words. The system without ARD however has to first forget
an old word and then learn the new word.

3-0 2-1 1-2 1-1

ARD base | ARD base | ARD base | ARD base
1|55.0 54.0| 57.9 56.6| 69.1 68.6| 68.6 68.8
21719 69.0| 76.3 72.9| 88.7 87.5| 89.1 84.7
3179.7 76.3|85.2 80.4|953 92.1|95.8 91.2
4 1844 80.6|89.1 84.3|98.0 93.1|97.8 93.1
5 | 87.8 83.1|92.0 86.6| 64.2 62.2| 64.0 61.5
6 1902 84.6|93.0 88.3|76.2 70.8| 80.8 74.7
71904 85.6|93.8 89.2|83.1 76.7| 90.1 82.2
8 191.3 86.4|94.6 90.3| 8.7 80.3| 93.8 86.4
91926 87.1|944 91.3|90.1 83.4| 95.6 &8.1
10] 92.1 88.3| 73.5 70.8| 92.6 85.0
11| 91.0 87.7|84.1 77.4|93.4 86.2
12| 92.1 87.6| 89.8 82.4|94.2 87.3
13| 91.5 88.0]93.5 85.3|94.0 88.3
14| 91.5 86.7| 95.7 86.7| 94.4 88.9

Table 1. Average percentage of correct commands. Every
column corresponds to a testing scenario described in section
4.2. The results are shown for the proposed system (ARD)
and the system without ARD (base). The leftmost column
shows the number of batches of 16 commands that have al-
ready been presented to the system. The line marks the point
where the users change their behaviour.

60

words

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14
batches

Fig. 1. The number of words plotted in function of the number
of batches presented to the system for all scenario’s described
in section 4.2

In figure 1 the number of words is plotted in function of
the number of presented batches for all scenarios. Only the
system with ARD is shown, because the dictionary size for
the system without ARD stays constant at the initial dictio-
nary size. In the pre-change phase the model order converges
to a constant value, this value is dependent on the number of
command sets in the pre-change phase. The point where the

change happens for the two scenarios with one set assigned to
the pre-change phase is at 5 batches. At this point we can see
that scenarios with more sets in the pre-change phase have a
bigger dictionary, which can be expected. After the change
the size jumps up because the system is detecting new words
and is adding them to the dictionary. A while after the change
the dictionary size starts dropping again because the words
that are no longer used start getting removed. When we com-
pare the post-change behaviour of the 1-1 scenario and the
1-2 scenario we can see that the 1-2 scenario grows to a big-
ger dictionary then the 1-1 scenario because there are more
sets assigned to the post-change phase.

5. CONCLUSIONS

A method to incrementally learn the relevance of words in a
dictionary has been proposed. The relevance can be used to
prune the dictionary, making it possible to grow and shrink the
dictionary automatically when new words have to be learned
or old words forgotten. The proposed system is tested and
compared to a system without ARD on scenario’s where the
vocabulary of the user suddenly changes. The results show
that the system with ARD can adjust quicker to the new vo-
cabulary because the dictionary can grow to model the new
words.

6. REFERENCES

[1] Michel Vacher et al., “The sweet-home project: Audio
technology in smart homes to improve well-being and
reliance,” in Engineering in Medicine and Biology So-
ciety, EMBC, 2011 Annual International Conference of
the IEEE. IEEE, 2011, pp. 5291-5294.

[2] Vincent Renkens et al., “Acquisition of ordinal words
using weakly supervised NMF,” in Spoken Language
Technology Workshop (SLT), 2014 IEEE. 1EEE, 2014,
pp. 30-35.

[3] Jort F Gemmeke et al., “A self-learning assistive vo-
cal interface based on vocabulary learning and grammar
induction,” in INTERSPEECH, 2012.

[4] Bart Ons, Netsanet Tessema, Janneke Van De Loo, and
Jort F Gemmeke, “A self learning vocal interface for
speech-impaired users,” SLPAT 2013, p. 73, 2013.

[5] Jort Gemmeke, Siddharth Sehgal, and Stuart Cunning-
ham, “Fast vocabulary learning for disordered speech
vocal interfaces,” in Spoken Language Technology
Workshop (SLT). IEEE, 2014.

[6] Daniel D Lee and H Sebastian Seung, “Algorithms for
non-negative matrix factorization,” in Advances in neu-
ral information processing systems, 2001, pp. 556-562.

(7]

(8]

(9]

(10]

(1]

[12]

(13]

Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu,
“Nonnegative matrix factorization with the itakura-saito
divergence: With application to music analysis,” Neural
computation, vol. 21, no. 3, pp. 793-830, 2009.

Yuan Gao and George Church, “Improving molecular
cancer class discovery through sparse non-negative ma-
trix factorization,” Bioinformatics, vol. 21, no. 21, pp.
3970-3975, 2005.

David Guillamet, Bernt Schiele, and Jordi Vitria, “Ana-
lyzing non-negative matrix factorization for image clas-
sification,” in Pattern Recognition, 2002. Proceedings.
16th International Conference on. IEEE, 2002, vol. 2,
pp. 116-119.

Vincent YF Tan and Cédric Févotte, “Automatic rele-
vance determination in nonnegative matrix factorization
with the beta-divergence,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 35, no. 7,
pp- 1592-1605, 2013.

Joris Driesen and Hugo Van hamme, “Modelling vocab-
ulary acquisition, adaptation and generalization in in-
fants using adaptive bayesian PLSA,” Neurocomputing,
vol. 74, no. 11, pp. 1874-1882, 2011.

Geoffrey Hinton et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups,” Signal Processing Mag-
azine, IEEE, vol. 29, no. 6, pp. 82-97, 2012.

Hugo Van hamme, “HAC-models: a novel approach to
continuous speech recognition,” in Proceedings Inter-
speech, ISCA, 2008.

